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Abstract

A 12-state lumped-element model is presented for a flexible rotor supported by two

attractive force electromagnetic journal bearings. The rotor is modelled as a rigid disk with

radial mass unbalance mounted on a flexible, massless shaft with internal damping (Jeffcott

rotor). The disk is offset axially from the midspan of the shaft. Bearing dynamics in each

radial direction are modelled as a parallel combination of a negative (unstable) spring and a

linear current-to-force actuator. The model includes translation and rotation of the rigid

mass and the first and second bending models of the flexible shaft, and is unique in that it

simultaneously includes internal shaft damping, gyroscopic effects, and the unstable nature

of the attractive force magnetic bearings.

The model is used to analyze the dependence of the system transmission zeros and

open-loop poles on system parameters. The dominant open-loop poles occur in

stable/unstable pairs with bandwidth dependent on the ratios of bearing (unstable)

stiffnesses to rotor mass and damping dependent on the shaft spin rate. The zeros occur in

complex conjugate pairs with bandwidth dependent on the ratios of shaft stiffnesses to

rotor mass and damping dependent on the shaft spin rate. Some of the transmission zeros

are non-minimum phase when the spin rate exceeds the shaft critical speed.

The transmission zeros and open-loop poles impact the design of magnetic bearing

control systems. The minimum loop cross-over frequency of the closed-loop system is the

speed of the unstable open-loop poles. And for super-critical shaft spin rates, the presence

of non-minimum phase zeros limits the disturbance rejection achievable at frequencies near

or above the shaft critical speed. Since non-minimum phase transmission zeros can only be

changed by changing the system inputs and/or outputs, closed-loop performance will be

limited for super-critical spin rates unless additional force or torque actuators are added.

This paper reports work performed as part of the author's master's thesis

lMcCallum 1988], which was completed in the winter of '87 and spring of '88. This work

was funded under Draper Lab I.R.&D.
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The application of modern, multi-input multi-output (MIMO) control system design

methodologies to the control of flexible rotors is the focus of current research. These

methodologies include: linear quadratic gaussian (LQG) control; LQG/LTR (Linear

Quadratic Gaussian/Loop Transfer Recovery); and H-infinity optimal control.

In many magnetic bearing applications, such as aircraft engines, the suspended

rotor spins at speeds exceeding the first and second critical speeds. The application of

modem design techniques to the control of these high speed rotors requires a linear system

model that is simple yet includes all dynamic effects that are important at high speeds.

When rotors spin above their critical speed(s), rotor flexible body modes can be

excited. When the rotor flexes, internal damping can serve as a mechanism of instability

[Crandall 1980, Johnson 1986]. Thus, the model used for control design should include

rotor flexibility (first and second bending modes) and the effects of internal shaft damping.

Angular dynamics are also important at high spin rates since gyroscopic coupling between

input axes can be large for high speed rotors. Gyroscopic effects are particularly important

for jet engines, where the rotor-bearing system can be subject to relatively large rotation

rates. Coupling between angular dynamics and translational dynamics can be significant,

and should be included in the model. Finally, the unstable nature of attractive-force

magnetic bearings should also be included.

This paper presents a model that simultaneously includes first and second mode

bending, gyroscopic effects, the effects of internal shaft damping, and the unstable nature

of attractive-force magnetic bearings. The model is used to determine system open-loop

poles and transmission zeros and their dependence on spin rate. The paper concludes with

a brief discussion of the implications for control system design.

The model presented here is intended to bridge the gap between models available in

the literature when the author's thesis research was performed and models used for detailed

rotor dynamic analysis. In practice, the model presented here should be augmented with

finite element or experimental analyses in a magnetic beating control system development

effort.
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The remainder of this paper is composed of three sections and two appendices. A

description of the lumped-element model is presented first. A discussion of the open-loop

eigenvalues and transmission zeros, and their variation with shaft spin rate, is then

presented. The paper concludes with a brief discussion of the implications of the system

dynamics for control.

Linearized equations of motion for the model are presented in the appendix. A

complete derivation of these equations, and a more thorough analysis of the dynamics, car_

be found in [McCallum 1988]. A bibliography also appears in an appendix.
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Parameters used in the modelling effort arc from a testbed designed at Draper Lab in

1987-1988. A tcstbed similar to the one shown above is now under construction.

The testbed consists of a flexible rotor supported at its ends by two attractivc-fome,

permanent magnet biased, electro-magnetic journal bearings. Inputs to the testbed are the

bearing currents in each axis. Measurements of the shaft-end positions are used for

control.

Although model parameters are from the Draper testbed, the model and results

presented here can be generalized to other actively-controlled rotors.

The model presented here considers only radial dynamics (radial translation and

rotation about shaft radii). Axial dynamics decouple from the radial dynamics to first

order.
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The rotor is modelled as a rigid flywheel with radial mass unbalance mounted on a

flexible, massless shaft with internal damping. In the model, the flywheel is allowed to

translate in radial directions and rotate about its radii. Each end of the shaft is modelled by

a rigid rod of appropriate length, with a parallel combination of a spring and a damper

acting between the rod end and the shaft wall in each of two perpendicular radial directions.

The shaft ends are allowed to move (independent of flywheel and of each other) in shaft

radial directions.

As desired, this rotor model includes gyroscopic effects, first and second mode

bending, the effetts of static mass unbalance, and internal shaft damping. Note that, since

the rigid rods are not necessarily of equal length, the effects of coupling between angular

and translational dynamics are also included.

Assumptions used in modelling the rotor are -

• the rigid flywheel is dynamically balanced

• the shaft ends are axisymmetric, so that stiffness and damping are the same in all

radial directions

• shaft stress is linearly dependent on strain-rate (linear internal shaft damping)

• axial dynamics decouple from the radial dynamics

Dynamics of each bearing in each radial direction are modelled by a parallel

combination of an unstable spring and a linear current to force actuator. Losses and high

frequency roll-off are ignored in the bearing model. Past magnetic bearing designs have

demonstrated input current to output force frequency responses that are flat to high

frequencies [Traxler 1984, Ulbrich 1984, Maslen, 1988]. This bearing model has

appeared often in the literature [ex. Downer 1986].

System inputs are the currents in coils for each axis of the two bearings. It is

assumed that (only) shaft end positions at the bearing are available. The measurements and

bearing forces are assumed to be in the same radial plane of the shaft - the effects of

noncollocation are not considered here.
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The figure above shows an end view of the model. Note that the shaft equivalent

springs and dampers rotate with the shaft. This model is sometimes called the Jeffcott rotor

in the literature [Johnson 1986]. Rotation of the dampers with the shaft is important for

modelling shaft whirl modes, since the equivalent damping of forward and backward whirl

modes is different for non-zero spin rates. In fact, the combination of shaft spin and

internal damping can add energy to the system for supercritical spin rates.
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Linearized equations of motion are derived in detail in [McCallum 1988], and are

presented in the appendix of this paper. The model that results for this system has 12

states, and predicts dynamics that are a function of shaft spin rate.

The linearized equations of motion were used to analyze the dependence of system

eigenvalues (poles) and transmission zeros on system parameters (stiffness, damping, spin

rate). Only the dependence on spin rate is discussed in this paper.

The model predicts 12 eigenvalues. 4 pair of eigenvalues correspond to rigid body

motion of the suspended rotor.

The first 4 rigid body poles correspond to angular motion of the flywheel. These

poles occur in 2 stable/unstable pairs. Since the shaft is much stiffer then the bearings, the

speed of these poles is dependent on the ratio of the equivalent rotational stiffness of the

bearings to the radial moment of inertia of the flywheel. For zero spin rate, these poles lie

on the real axis. As spin rate increases, the imaginary component of these poles increases

due to gyroscopic coupling.

4 poles correspond to translational motion of the flywheel. These poles occur in 2

stable/unstable pairs, each pair corresponding to displacement of the flywheel in the

horizontal or vertical direction. The speed of these poles is dependent on the ratio of the

bearing (unstable) stiffness to the rotor mass. For zero spin rate, these poles lie on the real

axis. As the spin rate increases, the translational poles have a small imaginary component

due to coupling with the angular rotational mode. If the flywheel were in the shaft center,

the translational motion poles would be independent of spin rate.

As the flywheel moves away from the center, coupling between the angular and

translational open-loop modes increases. In these cases, all rigid body modes will be a

combination of angular and translational motion.
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The 4 remaining poles correspond to shaft-end bending. These poles occur in

pairs, each pair corresponding to bending of one shaft end. The speed of these poles is the

ratio of the equivalent shaft end stiffness to the shaft end damping. For zero spin rate,

these poles lie on the real axis. As spin rate increases, the shaft-end bending poles have an

imaginary component equal to the shaft spin rate. This is because the projection of the

shaft-end deflection in the lab frame changes as the shaft rotates.
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Transmissionzerosoccurwhen,for someinitial condition,a naturalmotionof the

systemexistsfor whichtheoutputvectoris zerofor anon-zeroinputvector.

Forour model, the outputs are the shaft-end positions and the inputs are the bearing

currents. For a transmission zero to exist, the shaft-ends must be stationary. And if the

shaft ends are stationary, bearing current is directly proportional to bearing force. Thus,

for this model a transmission zero occurs if and only if there is a natural motion of the

system where the shaft-ends remain fixed for non-zero bearing forces.

These natural motions correspond to motions the rotor would have if mounted in

perfectly rigid bearings. Thus, the frequencies and (part of) the directions of transmission

zeros are the same as the eigenvalues and eigenvectors of the rotor with both ends fixed.

The extensive literature on the dynamics of rotors in stiff bearings can be used to

predict transmission zeros. Any rotor that is unstable in stiff bearings will have non-

minimum phase transmission zeros.
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The model predicts 4 pair of transmission zeros. The first 2 pair correspond to

translational whirl (first-mode bending). 1 pair corresponds to forward translational whirl.

I pair corresponds to backward translational whirl. Forward whirl is defined as a circular

rotor motion in the same direction as the rotor spin. Backward whirl is defined as circular

rotor motion in the direction opposite the rotor spin. For_ ard and backward translational

whirl are illustrated in above.

The second 2 p:_ir of transmission zeros correspond to rotational whirl (second-

mode bending). Again, 1 pair corresponds to forward whirl, the other pair correspond to

backward whirl. For the rotational whirl case, forward whirl corresponds to motions

where the ends of the equivalent rigid rods move in circles in the same direction as the shaft

spin. Backward whirl is the opposite motion.
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The above figure shows the transmission zeros as a function of spin rate.

The translational motion transmission zeros have a frequency equal to the first

critical speed. The frequency of these zeros is only a weak function of rotational speed.

However, the damping of these zeros is a strong function of spin rate. Damping of the

backward whirl zeros increases with spin rate, while the damping of the forward whirl

zeros decreases with spin rate. The forward translational whirl zeros become non-

minimum phase for all spin rates exceeding the first critical speed (the translational

resonance frequency).

At zero speed, the rotational motion transmission zeros has a frequency equal to the

second critical speed. The frequency of these zeros is a strong function of spin rate, with

forward whirl zeros asymptotically approaching the gyroscopic whirl frequency. The

damping of the forward whirl zeros is a decreasing function of rotational speed - for spin

rates exceeding the second critical speed, the forward whirl zeros are non-minimum phase.

The damping of the backward rotational whirl zeros increases with spin rate, with the

frequency of these zeros asymptotically approaching zero.
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Theopen-loopsystemdynamics impact the design and achievable performance of

magnetic bearing control systems.

The minimum loop cross-over frequency of the closed-loop system is the speed of

the unstable open-loop poles associated with rigid body motion. This result has appeared

in the literature [Groom 1979, Downer 1986].

For spin rates at or above the rotors critical speed, the transmission zeros become

non-minimum phase. As a result, the achievable disturbance rejection of the closed-loop

system is limited at frequencies near or above the shaft critical speeds (the frequencies of

the zeros). In addition, when the transmission zeros become non-minimum phase, each

complex conjugate pair contfibutes 180 deg. of phase lag rather than phase lead. This

transition explains stability problems encountered when spinning a magnetically suspended

rotor through its critical speeds (as for systems with notch filters).

Non-minimum phase zeros cannot be changed through active control. Canceling

fight-half plane zeros with compensator poles results in a system that it is internally

unstable. Zeros can only be changed by changing the system inputs or ouputs, i.e. by

adding additional actuators or sensors. The limitations imposed by non-minimum phase

zeros are physical limitations that cannot be overcome through feedback.
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Appendix A - Equations of Motion

This appendix presents linearized equations of motion for a magnetic bearing -

suspended rotor system. Included are a summary of the assumptions used in deriving the

equations, descriptions of reference frames, and a list of symbols. A detailed derivation of

the equations of motion can be found in [McCallum 1988].

A.I Summary of assumptions

The magnetically-suspended rotor is modelled as a rigid flywheel with radial mass

unbalance mounted on a flexible, massless shaft with internal dampi _g. In the model, the

flywheel is allowed to translate in radial directions and rotate about its radii. The shaft ends

are allowed to move (independent of the flywheel and of each other) in radial directions.

The mass is not assumed to be at the midspan of the shaft, so that the forces at the shaft

ends are not equal. The rotor model includes: gyroscopic effects; the first and second

bending modes; the effects of internal shaft damping; and differences in bearing loads. The

rotor model excludes the effects of axial torque and axial translation. Further, the shaft is

assumed to be axially symmetric so that the shaft stiffness and damping are the same in all

radial directions. Also, the rotor is assumed to be configured such that the spin axis is

aligned with the axial principal axis of the rotor (i.e., the rotor is dynmnically balanced) and

the radial moment of inertia is the same in all directions.

The magnetic beatings are modelled as a parallel combinatio_ of an unstable spring

and a linear current-force actuator in each direction l, i.e.,

Fyi = Kyi Yi + Ki 8iy1 (A.I.1)

Bearing losses and high frequency dynamics are ignored.

It is assumed that (only) measurements of the shaft end positions are available.

Sensor dynamics are excluded. In addition, it is assumed that the bearing forces and the

sensor measurements are at the same points on the shaft - non-colocation effects are

ignored. Justifications for the assumptions listed here can be found in [McCallum 1988].

IThis model appears often in the literature.
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A. 2 Reference frames

The system state is described by the position and velocity of the flywheel's

geometric center, the positions of the shaft ends, and rotations of the flywheel about its

radii. Positions and velocities are described in the cartesian reference frame XYZ shown in

Figure A. 1. This frame is fixed to "ground" with its origin at the force-free equilibrium

position of the flywheers geometric center. The X-axis is horizontal and coincident with

the centerline of the shaft when the system is in force-free equilibrium. The Y-axis of the

frame is vertical. The Z-axis is horizontal and coincident with a radius of the flywheel at

equilbrium. Figure A.I also shows the frames xyz and 123, which are used in [McCallum

1988] to derive the equations of motion. The rotational motions of the flywheel are

described in terms of the gyroscopic coordinates illustrated in Figures A.2 and A.3.

/
za /

/
/

X1('l

/

Yr

2

Figure A. 1 - Reference frames
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Figure A.2 - Euler angles
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Figure A.3 - Gyroscopic coordinates

A.3 Equations of Motion

The system states (x) are chosen as the flywheel translational and rotational

positions and velocities and the positions of the shaft ends

,,-- Y,,_ z, _ _, _, g2 _2Y,z, Y2z_
(A.3.1)
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Systeminputsarethechangesin bearingcoil currentsfrom their equilibrium values

u = [ iv1 izl iy2 iz2 ]T (A.3.2)

System outputs are the positions of the shaft ends

Y = [Y1 ZI Y2 Z2] T (A.3.3)

Linearized equations of motion for the rotor-bearing system can be written in state-space

form as:

_t=A(o_)x+Bu+d

y=Cx+Du+n

(A.3.4)

(A.3.5)

where

d ___

0

u cb Sin (tot + 0o) + u (o2Cos (tot + 0o) - g +

0

- u o_Cos (tot + 0o) + u to2 Sin (tot + 0o) +
M

0

lr

0

lr
dY_
bl
dZ_
bl

dY_z
b2

az2
b2 (A.3.6)
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O00000001000]
C= 000000000 I O0

000000000010
000000000001 (A.3.9)

D =[0 4x4 ] (A.3.10)

Note that, in this representation, radial mass unbalance is modelled as an input force

disturbance. The effects of dynamic balance could be included similarly. The effects of

measurement center offset could be added to this model as additive measurement noise.

A.4 List of Symbols

bi

d 2

d_l

d_2

dY i

dYr

dZr

Ia

Ir

iyi

izi

ki

Kyi

Kzi

li

M

n

I!

u

(o

= equivalent damping of shaft end i

= vector of input disturbances

= torque disturbance acting on the rotor in the _l-direction

= torque disturbance acting on the rotor in the _2-direction

= force disturbance acting on shaft end i in the Y-direction

= force disturbance acting on the rotor in the Y-direction

= force disturbance acting on shaft end i in the Z-direction

= force disturbance acting on the rotor in the Z-direction

= axial moment of inertia

= radial moment of inertia

= current in the Y-coil(s) at shaft end i

= current in the Z-coil(s) at shaft end i

= equivalent stiffness of shaft end i

= equivalent (unstable) stiffness of bearing at shaft end i in the Y-direction

= equivalent (unstable) stiffness of beating at shaft end i in the Z-direction

= equivalent length of shaft end i

= rotor mass

= sensor noise

= control inputs

= radial mass unbalance distance

= shaft spin rate

2Bold denotes a vector.
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x

Y

Yi

zi

t

Oo

= state vector

= gyroscopic coordinate, approximately equal to rotation about the +Y-axis

= gyroscopic coordinate, approximamly equal to rotation about the +Z-axis

= system outputs

= displacement of shaft end i in the Y-direction

= displacement of the rigid rotor in the Y-direction

= displacement of shaft end i in the Z-direction

= rotor displacement in the Z-direction

=time

= orientation of the radial unbalance vector with respect to the +1 axis

= Euler angles describing rotor orientation
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